• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lihua (Wu, Lihua.) | Zhao, Mi (Zhao, Mi.) (学者:赵密) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI CSCD

摘要:

A high-accuracy absorbing boundary condition in the time domain is proposed, which can be coupled with the finite element method seamlessly to simulate the propagation of the transient scalar wave in the D'Alembert viscoelastic multilayered media. First, a semi-discrete displacement equation of the semi-infinite domain and the force-displacement relationship in the artificial boundary are obtained by semi-discretizing the semi-infinite domain along the vertical depth. Modal decomposition is utilized to convert the field of the semi-infinite domain in the physical space into the modal space. Then the dynamic stiffness of the semi-infinite domain in the frequency domain in the modal space is obtained according to both the displacement equation and the force-displacement relationship in the modal space. Second, a scalar continued fraction, which is convergent over the whole frequency domain, is proposed to describe the scalar dynamic stiffness in the modal space of the D'Alembert viscoelastic single-layered medium. The scalar continued fraction is extended to the matrix form to represent the dynamic stiffness in the modal space of the D'Alembert viscoelastic multilayered media. Last, by introducing auxiliary variables, a time-domain absorbing boundary condition in the modal space is constructed based on the proposed continued fraction. Subsequently, considering the relationship of the field in the modal space and in the physical space, a time-domain absorbing boundary condition in the physical space is obtained by converting the absorbing boundary condition in the modal space into the physical space. Two numerical examples of a single-layered medium and a five-layered media verify that the proposed method is accurate and stable for the D'Alembert viscoelastic single-layered medium, and for the D'Alembert viscoelastic multilayered media, in order to ensure the proposed method's property of high-accuracy, the distance from artificial boundary to the region of interest needs to be about 0.5 times of the total layer height of the infinite domain. © 2020, Chinese Journal of Theoretical and Applied Mechanics Press. All right reserved.

关键词:

Boundary conditions Dynamics Frequency domain analysis Image segmentation Numerical methods Shear waves Stiffness Stiffness matrix Time domain analysis Viscoelasticity Wave propagation

作者机构:

  • [ 1 ] [Wu, Lihua]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhao, Mi]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Du, Xiuli]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Chinese Journal of Theoretical and Applied Mechanics

ISSN: 0459-1879

年份: 2020

期: 2

卷: 52

页码: 480-490

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:832/2900281
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司