• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | A, Yin-Ga (A, Yin-Ga.) | Zhang, Lu (Zhang, Lu.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus CSCD

摘要:

To improve the distribution performance of multiobjective particle swarm optimization algorithm,an adaptive multiobjective particle swarm optimization algorithm,based on the decomposed archive,named AMOPSO-DA,is developed in this paper.First,an external archive update strategy,based on the spatial distribution information of optimal solutions,is designed to improve the searching ability of AMOPSO-DA.Second,an adaptive flying parameter adjustment strategy,based on the evolutionary direction information of each particle,is proposed to balance the exploration ability and the exploitation ability.Finally,this proposed AMOPSO-DA is applied to some multiobjective optimization problems.The experiment results demonstrate that AMOPSO-DA can obtain well-distributed optimal solutions. © 2020, Chinese Institute of Electronics. All right reserved.

关键词:

Particle swarm optimization (PSO) Multiobjective optimization Optimal systems

作者机构:

  • [ 1 ] [Han, Hong-Gui]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Han, Hong-Gui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [A, Yin-Ga]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [A, Yin-Ga]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Zhang, Lu]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Zhang, Lu]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 7 ] [Qiao, Jun-Fei]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Acta Electronica Sinica

ISSN: 0372-2112

年份: 2020

期: 7

卷: 48

页码: 1245-1254

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2323/3868434
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司