• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) (学者:金浏) | Liu, Mengjia (Liu, Mengjia.) | Zhang, Renbo (Zhang, Renbo.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI Scopus SCIE

摘要:

To explore the nonlinear bond behavior between ribbed bar and concrete, considering frictional resistance and the mechanical interlocking between rebar and concrete as well as the surface characteristic of crescent ribbed bar, a 3D meso-scale modelling approach is established. Comparisons between the simulation and experimental results indicate that the meso-scale method can provide good predictions of the interface behavior between concrete and deformed steel bar under confinement conditions. The bond failure mechanism and the propagation of internal crack of specimen were clearly studied and revealed based on the 3D simulations. Moreover, the influences of concrete strength gradation, ratio of cover thickness to bar diameter as well as stirrup confinement on bond stress-slip behavior, concrete failure mode and rebar stress were explored. The simulation results indicate that the meso-scale modelling method can well describe the bond failure process at the steel bar/concrete interface. It is found that increasing the concrete strength can delay the internal crack of the specimen and may change the failure mode of the specimen from splitting failure to pull-out failure. As concrete strength increases, the bond strength increases linearly, whereas the peak slip decreases slightly. The shape of bond stress-slip curve and the concrete failure modes are closely associated with the lateral confinements such as concrete cover thickness and the stirrup confinement. When the cover thickness and the stirrup confinement index reach a certain value, the bond failure would no longer be affected. In addition, the strain of stirrups increases continuously, the bond stress provided by stirrups increases first and then decreases. © 2020 Elsevier Ltd

关键词:

Rebar Cracks Friction Failure (mechanical) Reinforced concrete Failure modes

作者机构:

  • [ 1 ] [Jin, Liu]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Liu, Mengjia]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zhang, Renbo]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Du, Xiuli]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [zhang, renbo]key laboratory of urban security and disaster engineering of ministry of education, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Engineering Fracture Mechanics

ISSN: 0013-7944

年份: 2020

卷: 239

5 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 42

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1992/4279266
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司