• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) (学者:金浏) | Yang, Wang-Xian (Yang, Wang-Xian.) | Yu, Wen-Xuan (Yu, Wen-Xuan.) | Du, Xiu-Li (Du, Xiu-Li.) (学者:杜修力)

收录:

EI CSCD

摘要:

Lightweight aggregate concrete (LWAC) is utilized more and more in practical engineering structures because of the light weight and good thermal insulation performance. In this study, LWAC was regarded a three-phase composite consisting of aggregate particles, a mortar matrix and the interface transition zone. A meso-scale simulation method for modelling the dynamic failure of concrete was established. The plastic damage constitutive model coupling with the effect of strain rate was adopted to describe the mechanical properties of concrete meso-components. The compressive failure behavior and size effect of LWAC under dynamic compressive loading were studied. The simulation results indicated that with the increase in strain rate, the inertia effect became dominant, and the size effect on dynamic compressive strength was gradually weakened and suppressed. At the critical strain rate, the size effect would be completely suppressed. In addition, according to the influence mechanism of strain rate effect, the mechanism of size effect on the dynamic compressive strength of LWAC was studied. A semi-empirical and semi-theoretical 'static-dynamic unified size effect law' for quantitatively describing the size effect of LWAC was subsequently established. © 2020, Engineering Mechanics Press. All right reserved.

关键词:

Aggregates Compressive strength Concrete aggregates Dynamics Failure (mechanical) Light weight concrete Size determination Strain rate Thermal Engineering Thermal insulation

作者机构:

  • [ 1 ] [Jin, Liu]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yang, Wang-Xian]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yu, Wen-Xuan]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Du, Xiu-Li]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 杜修力

    [du, xiu-li]key laboratory of urban security and disaster engineering of ministry of education, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Engineering Mechanics

ISSN: 1000-4750

年份: 2020

期: 3

卷: 37

页码: 56-65

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:272/2895402
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司