• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Zheng (Zhang, Zheng.) | Chen, Yan-Yan (Chen, Yan-Yan.) (学者:陈艳艳) | Liang, Tian-Wen (Liang, Tian-Wen.)

收录:

EI Scopus CSCD

摘要:

This paper proposes a land use inferring method based on the convolutional neural network (CNN), which can infer multiple lane use types at the traffic analysis zones (TAZs) simultaneously. The study combines public transport mobility dataset and online car-hailing mobility dataset for inferring land use type. Generation intensity, attraction intensity, and difference between generation and attraction intensity are extracted from the travel dataset, which are then used to train the CNN. The optimal network structure is determined by grid search. The TAZs within the 6th Ring Road of Beijing are taken as examples for the analysis. The results indicate that the proposed method is able to estimate the proportion distribution of several land use types at the same time within the TAZs, such as resident, workplace and leisure land uses. Copyright © 2020 by Science Press.

关键词:

Convolutional neural networks Systems engineering Structural optimization Land use

作者机构:

  • [ 1 ] [Zhang, Zheng]College of Metropolitan Transportation, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Chen, Yan-Yan]College of Metropolitan Transportation, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Liang, Tian-Wen]Research Institute of Highway Ministry of Transport, Beijing; 100088, China

通讯作者信息:

  • 陈艳艳

    [chen, yan-yan]college of metropolitan transportation, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Transportation Systems Engineering and Information Technology

ISSN: 1009-6744

年份: 2020

期: 5

卷: 20

页码: 29-35

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:847/3852639
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司