• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jianhua (Zhang, Jianhua.) | Miao, Yuanyuan (Miao, Yuanyuan.) | Sun, Yawen (Sun, Yawen.) | Zhang, Qiong (Zhang, Qiong.) | Dai, Jiatong (Dai, Jiatong.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

EI Scopus SCIE

摘要:

The feasibility of in situ start-up of mainstream anammox process was investigated in three parallel sequencing batch biofilm reactors (SBBRs) inoculated with nitrification sludge, partial nitrification sludge, and denitrifying phosphorus removal sludge, respectively. The SBBRs were operated under alternate anaerobic/aerobic/anoxic pattern at ambient temperature (16.5-26.8 degrees C). The influent organic and nitrogen loading rates were increased stepwise. Anammox bacteria grew exponentially with relative abundance and overall bacterial activity increasing from 0 to 0.004% to 0.29-0.40% and 'not detected' to 6-7 mg N/L/h, respectively. Desirable nitrogen removal efficiency of about 86% was obtained in 3-4 months for the influent nitrogen of 40.5-73.6 mg N/L. Anammox was the primary nitrogen transformation pathway. For the anammox bacterial enrichment, biofilm, alternate anaerobic/aerobic/anoxic pattern, and limited aeration played important roles. Seed sludge with high ammonium oxidizing bacterial activity further promoted the start-up of anammox process. The in situ start-up strategy could promote the full-scale application of mainstream anammox.

关键词:

In situ start-up Microbial population analysis Domestic sewage Mainstream anammox Sequencing batch biofilm reactor

作者机构:

  • [ 1 ] [Zhang, Jianhua]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Miao, Yuanyuan]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Yawen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Qiong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Dai, Jiatong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Jianhua]Qingdao Univ Technol, Sch Environm & Municipal Engn, Qingdao 266033, Peoples R China
  • [ 8 ] [Miao, Yuanyuan]Qingdao Univ, Sch Environm Sci & Engn, Qingdao 266071, Peoples R China

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BIORESOURCE TECHNOLOGY

ISSN: 0960-8524

年份: 2021

卷: 339

1 1 . 4 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:84

JCR分区:1

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 38

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:490/3897185
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司