• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yin, Sheng-lin (Yin, Sheng-lin.) | Zhang, Xing-lan (Zhang, Xing-lan.) | Liu, Shuo (Liu, Shuo.)

收录:

EI Scopus SCIE

摘要:

The combination of deep learning and intrusion detection has become a hot topic in today's information security. In today's risky network environment, the ability to accurately detect anomalous data is an important task for intrusion detection. In an intrusion detection system, each piece of data contains multiple features. However, not every feature will determine the nature of the data, on the contrary, too many features will affect the model's judgment. In this paper, we propose an intrusion detection model of a deep capsule network based on an attention mechanism. The model uses a deep capsule network to enhance the extraction of features, and the attention mechanism is carried out to make the model focus on the features with large influences. The features are captured in multiple directions by a double routing algorithm and two strategies are adopted to stabilize the dynamic routing process. Finally, experiments are conducted on the intrusion detection dataset with good results.

关键词:

Capsule network Deep learning Security Intrusion detection

作者机构:

  • [ 1 ] [Zhang, Xing-lan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Xing-lan]Beijing Key Lab Trusted Comp, Beijing, Peoples R China

通讯作者信息:

  • [Zhang, Xing-lan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

COMPUTER NETWORKS

ISSN: 1389-1286

年份: 2021

卷: 197

5 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1363/3923081
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司