收录:
摘要:
Traditional optical switches relying on the weak, volatile thermo-optic or electro-optic effects of Si or SiN waveguides show a high consumption and large footprint. In this paper, we reported an electric-driven phase change optical switch consisting of a Si waveguide, Ge2Sb2Te5 (GST) thin film and graphene heater suitable for large-scale integration and high-speed switching. The reversible transition between the amorphous and crystalline states was achieved by applying two different voltage pulses of 1.4 V (SET) and 4 V (RESET). The optical performance of the proposed switch showed a high extinction ration of 44-46 dB in a wide spectral range (1525-1575 nm), an effective index variation of Delta n (eff) = 0.49 and a mode loss variation of Delta alpha = 15 dB mu m(-1) at the wavelength of 1550 nm. In thermal simulations, thanks to the ultra-high thermal conductivity of graphene, the proposed switch showed that the consumption for the SET process was only 3.528 pJ with a 1.4 V pulse of 5 ns, while a 4 V pulse of 1.5 ns was needed for RESET process with a consumption of 1.05 nJ. Our work is helpful to analyze the thermal-conduction phase transition process of on-chip phase change optical switches, and the design of the low-energy-consumption switch is conducive to the integrated application of photonic chips.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
NANOTECHNOLOGY
ISSN: 0957-4484
年份: 2021
期: 40
卷: 32
3 . 5 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:116
JCR分区:2