• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Chenhao (Li, Chenhao.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Yao, Jiacheng (Yao, Jiacheng.)

收录:

EI Scopus SCIE

摘要:

Live video hosted by streamer is being sought after by more and more Internet users. A few streamers show inappropriate action in normal live video content for profit and popularity, who bring great harm to the network environment. In order to effectively regulate the streamer behavior in live video, a strea-mer action recognition method in live video with spatial-temporal attention and deep dictionary learning is proposed in this paper. First, deep features with spatial context are extracted by a spatial attention net-work to focus on action region of streamer after sampling video frames from live video. Then, deep fea-tures of video are fused by assigning weights with a temporal attention network to learn the frame attention from an action. Finally, deep dictionary learning is used to sparsely represent the deep features to further recognize streamer actions. Four experiments are conducted on a real-world dataset, and the competitive results demonstrate that our method can improve the accuracy and speed of streamer action recognition in live video. (c) 2021 Elsevier B.V. All rights reserved.

关键词:

Streamer Action recognition Live video Spatial-temporal attention Deep dictionary learning

作者机构:

  • [ 1 ] [Li, Chenhao]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 3 ] [Yao, Jiacheng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 4 ] [Li, Chenhao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Yao, Jiacheng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2021

卷: 453

页码: 383-392

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:59/3931375
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司