Indexed by:
Abstract:
The effect of plasma excitation frequency on the performance of intrinsic hydrogenated amorphous silicon (a-Si:H) films and heterojunction solar cells by radio-frequency (RF, 13.56 MHZ) and very-high-frequency (VHF, 40 MHZ) plasma-enhanced chemical vapor deposition (PECVD) have been investigated. The thickness and microstructure of intrinsic a-Si:H films were measured by spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR). The a-Si:H/c-Si interface passivation quality were determined by minority carrier lifetime and transmission electron microscopy (TEM). The current-voltage (I-V) performance of the HJT solar cells were also evaluated. The results reveal that a-Si:H films developed by RF-PECVD with a large area of parallel-plate reactors (> 1 m(2)) exhibit better thickness uniformity, lower microstructure factor, and higher minority carrier lifetimes. Hence HJT solar cells have achieved efficiency of 24.9%, compared with cell efficiency of 24.6% with intrinsic a-Si:H films developed by VHF-PECVD.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
ISSN: 0957-4522
Year: 2021
Issue: 20
Volume: 32
Page: 25327-25331
2 . 8 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:116
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0