• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xiong, Chen (Xiong, Chen.) | Zheng, Jie (Zheng, Jie.) | Xu, Liangjin (Xu, Liangjin.) | Cen, Chengyu (Cen, Chengyu.) | Zheng, Ruihao (Zheng, Ruihao.) | Li, Yi (Li, Yi.) (学者:李易)

收录:

Scopus SCIE

摘要:

This study introduces a multiple-input convolutional neural network (MI-CNN) model for the seismic damage assessment of regional buildings. First, ground motion sequences together with building attribute data are adopted as inputs of the proposed MI-CNN model. Second, the prediction accuracy of MI-CNN model is discussed comprehensively for different scenarios. The overall prediction accuracy is 79.7%, and the prediction accuracies for all scenarios are above 77%, indicating a good prediction performance of the proposed method. The computation efficiency of the proposed method is 340 times faster than that of the nonlinear multi-degree-of-freedom shear model using time history analysis. Third, a case study is conducted for reinforced concrete (RC) frame buildings in Shenzhen city, and two seismic scenarios (i.e., M6.5 and M7.5) are studied for the area. The simulation results of the area indicate a good agreement between the MI-CNN model and the benchmark model. The outcomes of this study are expected to provide a useful reference for timely emergency response and disaster relief after earthquakes.

关键词:

multiple-input convolutional neural network machine learning seismic damage assessment nonlinear time history analysis seismic response

作者机构:

  • [ 1 ] [Xiong, Chen]Chongqing Univ, Sch Civil Engn, Key Lab New Technol Construct Cities Mt Area, Chongqing 400045, Peoples R China
  • [ 2 ] [Xu, Liangjin]Chongqing Univ, Sch Civil Engn, Key Lab New Technol Construct Cities Mt Area, Chongqing 400045, Peoples R China
  • [ 3 ] [Xiong, Chen]Shenzhen Univ, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518060, Peoples R China
  • [ 4 ] [Zheng, Jie]Shenzhen Univ, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518060, Peoples R China
  • [ 5 ] [Cen, Chengyu]Shenzhen Univ, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518060, Peoples R China
  • [ 6 ] [Zheng, Ruihao]Shenzhen Univ, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518060, Peoples R China
  • [ 7 ] [Li, Yi]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xu, Liangjin]Chongqing Univ, Sch Civil Engn, Key Lab New Technol Construct Cities Mt Area, Chongqing 400045, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED SCIENCES-BASEL

年份: 2021

期: 17

卷: 11

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:167/4682290
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司