• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Fen (Yang, Fen.) | Moayedi, Hossein (Moayedi, Hossein.) | Mosavi, Amir (Mosavi, Amir.)

收录:

SSCI SCIE

摘要:

Predicting the level of dissolved oxygen (DO) is an important issue ensuring the sustainability of the inhabitants of a river. A prediction model can predict the DO level using a historical dataset with regard to water temperature, pH, and specific conductance for a given river. The model can be built using sophisticated computational procedures such as multi-layer perceptron-based artificial neural networks. Different types of networks can be constructed for this purpose. In this study, the authors constructed three networks, namely, multi-verse optimizer (MVO), black hole algorithm (BHA), and shuffled complex evolution (SCE). The networks were trained using the datasets collected from the Klamath River Station, Oregon, USA, for the period 2015-2018. We found that the trained networks could predict the DO level of 2019. We also found that both BHA- and SCE-based networks could predict the level of DO using a relatively simple configuration compared to that of MVO. From the viewpoints of absolute errors and Pearson's correlation coefficient, MVO- and SCE-based networks performed better than BHA-based networks. In synopsis, the authors recommend MVO- and MLP-based artificial neural networks for predicting the DO level of a river.

关键词:

artificial intelligence big data data science deep learning dissolved oxygen hydrological model machine learning neural network water quality water treatment

作者机构:

  • [ 1 ] [Yang, Fen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
  • [ 2 ] [Moayedi, Hossein]Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
  • [ 3 ] [Moayedi, Hossein]Duy Tan Univ, Fac Civil Engn, Da Nang 550000, Vietnam
  • [ 4 ] [Mosavi, Amir]Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary

通讯作者信息:

  • [Moayedi, Hossein]Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam;;[Moayedi, Hossein]Duy Tan Univ, Fac Civil Engn, Da Nang 550000, Vietnam;;[Mosavi, Amir]Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary

查看成果更多字段

相关关键词:

来源 :

SUSTAINABILITY

年份: 2021

期: 17

卷: 13

3 . 9 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:7

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 39

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:162/3610948
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司