• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ni, Pinghe (Ni, Pinghe.) | Li, Jun (Li, Jun.) | Hao, Hong (Hao, Hong.) | Han, Qiang (Han, Qiang.) (学者:韩强) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI Scopus SCIE

摘要:

The estimation of the posterior probability distribution of unknown parameters remains a challenging issue for model updating with uncertainties. Most current studies are based on stochastic simulation techniques. This paper proposes a novel variational Bayesian inference approach to estimate posterior probability distributions by using the vibration responses of civil engineering structures. An adaptive Gaussian process modeling technique is used to represent the "expensive-to-evaluate" likelihood function, and the unknown posterior probability distribution is represented using a Gaussian mixture model. The evidence lower bound (ELBO) and its gradients can be computed analytically using the built Gaussian process and mixture models. The unknown parameters in the Gaussian mixture model can be identified by maximizing the value of ELBO. The stochastic gradient descent method is applied to perform the optimization. Numerical studies on an eight-story shear-type building and a simply supported beam are conducted to verify the accuracy and efficiency of using the proposed approach for probabilistic model updating and damage identification. Experimental studies on a laboratory steel frame structure are also conducted to validate the proposed approach. Results demonstrate that the posterior probability distributions of the unknown structural parameters can be successfully identified, and reliable probabilistic model updating and damage identification can be achieved. (C) 2021 Elsevier B.V. All rights reserved.

关键词:

Variational inference Damage detection Condition assessment Probabilistic model updating Bayesian inference

作者机构:

  • [ 1 ] [Ni, Pinghe]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 2 ] [Han, Qiang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 4 ] [Li, Jun]Curtin Univ, Sch Civil & Mech Engn, Ctr Infrastruct Monitoring & Protect, Kent St, Bentley, WA 6102 USA
  • [ 5 ] [Hao, Hong]Curtin Univ, Sch Civil & Mech Engn, Ctr Infrastruct Monitoring & Protect, Kent St, Bentley, WA 6102 USA

通讯作者信息:

  • 韩强

    [Han, Qiang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

ISSN: 0045-7825

年份: 2021

卷: 383

7 . 2 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 57

SCOPUS被引频次: 63

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:558/3900293
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司