• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Yi (Zheng, Yi.) | Zhou, Yong (Zhou, Yong.) | Zhao, Jiaqi (Zhao, Jiaqi.) | Jian, Meng (Jian, Meng.) | Yao, Rui (Yao, Rui.) | Liu, Bing (Liu, Bing.) | Chen, Ying (Chen, Ying.)

收录:

EI Scopus SCIE

摘要:

Deep learning methods show strong ability in extracting high-level features for images in the field of person re-identification. The produced features help inherently distinguish pedestrian identities in images. However, on deep learning models over-fitting and discriminative ability of the learnt features are still challenges for person re-identification. To alleviate model over-fitting and further enhance the discriminative ability of the learnt features, we propose siamese pedestrian alignment networks (SPAN) for person re-identification. SPAN employs two streams of PAN (pedestrian alignment networks) to increase the size of network inputs over limited training samples and effectively alleviate network over-fitting in learning. In addition, a verification loss is constructed between the two PANs to adjust the relative distance of two input pedestrians of the same or different identities in the learned feature space. Experimental verification is conducted on six large person re-identification data sets and the experimental results demonstrate the effectiveness of the proposed SPAN for person re-identification.

关键词:

Person re-identification Feature learning Deep learning Verification loss Neural network

作者机构:

  • [ 1 ] [Zheng, Yi]China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 2 ] [Zhou, Yong]China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 3 ] [Zhao, Jiaqi]China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 4 ] [Yao, Rui]China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 5 ] [Liu, Bing]China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 6 ] [Chen, Ying]China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 7 ] [Zheng, Yi]Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 8 ] [Zhou, Yong]Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 9 ] [Zhao, Jiaqi]Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 10 ] [Yao, Rui]Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 11 ] [Liu, Bing]Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 12 ] [Chen, Ying]Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 13 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhou, Yong]China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;;[Zhou, Yong]Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

MULTIMEDIA TOOLS AND APPLICATIONS

ISSN: 1380-7501

年份: 2021

期: 25

卷: 80

页码: 33951-33970

3 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:80/4301663
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司