• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Hao (Chen, Hao.) | Guo, Hang (Guo, Hang.) (学者:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

收录:

EI Scopus SCIE

摘要:

Orientated-type flow channels having porous blocks enhance the reactant transfer into gas diffusion layers of proton exchange membrane fuel cells. However, because of the blockages accounted by baffles and porous blocks in channel regions, pumping power increases. In this study, with the aim of further reducing the pumping power in flow channels with porous-blocked baffles, an orientated-type flow channel with streamline baffles having porous blocks is proposed. By employing an improved two-fluid model, cell performance, liquid water distribution and pumping power in a single flow channel are numerically studied. The simulation results show that the baffles with porous blocks increase the cell performance, and the streamline baffles with larger volumes further increase the performance; the produced water in porous regions is ejected more under inertial effect, especially at the regions near to baffles in gas diffusion layers and inside porous blocks. In addition, by using the streamline baffles, the excessive increase in power loss is further reduced. Moreover, the location and porosity effects of baffles with porous blocks are analyzed. Simulation results show that the location exhibits obscure effects on reactant transfer and cell performance, while the liquid water can be removed more when the porous blocked baffles are concentrated at downstream. The net power is enhanced more when using three porous blocks with the porosity of 0.00. (c) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

关键词:

Forchheimer's effect Proton exchange membrane fuel cell Flow channel design Mass transfer Orientated-type flow channel

作者机构:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Energy & Power Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Energy & Power Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Energy & Power Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

ISSN: 0360-3199

年份: 2021

期: 57

卷: 46

页码: 29443-29458

7 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 42

SCOPUS被引频次: 43

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:112/3897569
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司