• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Juan (Fang, Juan.) (学者:方娟) | Ma, Aonan (Ma, Aonan.)

收录:

SCIE

摘要:

In today's era of Internet of Things (IoT), efficient and real-time processing of massive data generated by IoT device has become the primary issue for traditional cloud computing network architectures. As a supplement of cloud computing, edge computing enhances the real-time performance of service completion by offloading services to edge servers closer to the terminal device for execution, while reducing power consumption and computing load in the cloud. In this article, we propose the following solutions to resolve the different requests of the IoT device: in an "edge-cloud" heterogeneous network environment, create a mapping scheme between application modules and basic resource equipment, considering the two factors of tolerant task latency and system power consumption. In the application step-by-step execution process, heuristic dynamic task processing algorithm is used to reduce the task latency time. Experiments with the "iFogSim" simulator show that, application service quality is significantly improved and system power consumption is greatly reduced, which compared with the stable application module placement strategy and the static task scheduling strategy.

关键词:

Cloud computing Edge computing Internet of Things Internet-of-Things (IoT) service placement Network architecture Processor scheduling resource allocation Servers Task analysis task scheduling

作者机构:

  • [ 1 ] [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Aonan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 方娟

    [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE INTERNET OF THINGS JOURNAL

ISSN: 2327-4662

年份: 2021

期: 16

卷: 8

页码: 12771-12781

1 0 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 31

SCOPUS被引频次: 47

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:177/3603313
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司