收录:
摘要:
The failure mechanism of the mega-sub isolation system under near-fault ground motions is studied in this article. 90 suites of near-fault ground motions collected from 23 earthquakes are adopted to investigate the ground motion intensity indices applicable for the mega-sub isolation system. Then, the sensitivities of the stochastic responses to the structural parameters are analyzed to determine the representative random structural parameters. Furthermore, considering the uncertainties of ground motion characteristics and structural parameters, the seismic fragility is analyzed by the response surface method in order to obtain the failure mechanism of this system under near-fault ground motions. Results show that different intensity indices have various correlation coefficients with the peak responses of the mega-sub isolation system. The correlations of acceleration-related intensity indices are the worst, whereas the correlations of displacement-related intensity indices show high linearity. The sensitivities of the structural responses are weaker to the sub-structure story stiffness but more sensitive to the sub-structure story mass and the stiffness and damping ratio of the isolation layer. The failure probability of the sub-structure is higher than that of the mega-structure under near-fault ground motion. While in the collapse state, the failure probability of the isolation layer is greater than that of the sub-structure.
关键词:
通讯作者信息:
电子邮件地址: