• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hu, Wenjin (Hu, Wenjin.) | Wu, Lifang (Wu, Lifang.) | Jian, Meng (Jian, Meng.) | Chen, Yukun (Chen, Yukun.) | Yu, Hui (Yu, Hui.)

收录:

EI Scopus SCIE

摘要:

Deep supervised hashing takes prominent advantages of low storage cost, high computational efficiency and good retrieval performance, which draws attention in the field of large-scale image retrieval. However, similarity-preserving, quantization errors and imbalanced data are still great challenges in deep supervised hashing. This paper proposes a pairwise similarity-preserving deep hashing scheme to handle the aforementioned problems in a unified framework, termed as Cosine Metric Supervised Deep Hashing with Balanced Similarity (BCMDH). BCMDH integrates contrastive cosine similarity and Cosine distance entropy quantization to preserve the original semantic distribution and reduce the quantization errors simultaneously. Furthermore, a weighted similarity measure with cosine metric entropy is designed to reduce the impact of imbalanced data, which adaptively assigns weights according to sample attributes (pos/neg and easy/hard) in the embedding process of similarity-preserving. The experimental results on four widely-used datasets demonstrate that the proposed method is capable of generating hash codes of high quality and improve large-scale image retrieval performance. CO 2021 Published by Elsevier B.V.

关键词:

Cosine metric Image retrieval Balanced similarity Deep learning Supervised deep hashing

作者机构:

  • [ 1 ] [Hu, Wenjin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Yukun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yu, Hui]Univ Portsmouth, Sch Creat Technol, Portsmouth PO1 2DJ, Hants, England

通讯作者信息:

  • [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2021

卷: 448

页码: 94-105

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:460/4953844
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司