• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Qili (Chen, Qili.) | Wang, Jiuhe (Wang, Jiuhe.) | Qiao Junfei (Qiao Junfei.) (学者:乔俊飞) | Zou, Ming Yi (Zou, Ming Yi.)

收录:

EI Scopus SCIE

摘要:

Optimization problems on unknown low-dimensional structures given by high-dimensional data belong to the field of optimizations on manifolds. Though recent developments have advanced the theory of optimizations on manifolds considerably, when the unknown low-dimensional manifold is given in the form of a set of data in a high-dimensional space, a practical optimization method has yet to be developed. Here, we propose a neural network approach to these optimization problems. A neural network is used to approximate a neighborhood of a point, which will turn the computation of a next point in the searching process into a local constraint optimization problem. Our method ensures the convergence of the process. The proposed approach applies to optimizations on manifolds embedded into Euclidean spaces. Experimental results show that this approach can effectively solve optimization problems on unknown manifolds. The proposed method provides a useful tool to the field of study low-dimensional structures given by high-dimensional data.

关键词:

High-dimensional data Neural network Riemannian manifold

作者机构:

  • [ 1 ] [Chen, Qili]Beijing Informat Sci & Technol Univ, 12 Xiaoyingdonglu, Beijing 100192, Peoples R China
  • [ 2 ] [Wang, Jiuhe]Beijing Informat Sci & Technol Univ, 12 Xiaoyingdonglu, Beijing 100192, Peoples R China
  • [ 3 ] [Qiao Junfei]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 4 ] [Zou, Ming Yi]Univ Wisconsin, POB 413, Milwaukee, WI 53201 USA

通讯作者信息:

  • [Chen, Qili]Beijing Informat Sci & Technol Univ, 12 Xiaoyingdonglu, Beijing 100192, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SOFT COMPUTING

ISSN: 1432-7643

年份: 2021

期: 20

卷: 25

页码: 12717-12723

4 . 1 0 0

JCR@2022

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:567/4295405
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司