收录:
摘要:
Controllable strong interactions between a nanocavity and a single emitter is important to manipulating optical emission in a nanophotonic system but challenging to achieve. Herein a three-dimensional DNA origami, named as DNA rack (DR) is proposed and demonstrated to deterministically and precisely assemble single emitters within ultra-small plasmonic nanocavities formed by closely coupled gold nanorods (AuNRs). Uniquely, the DR is in a saddle shape, with two tubular grooves that geometrically allow a snug fit and linearly align two AuNRs with a bending angle < 10 degrees. It also includes a spacer at the saddle point to maintain the gap between AuNRs as small as 2-3 nm, forming a nanocavity estimated to be 20 nm(3) and an experimentally measured Q factor of 7.3. A DNA docking strand is designed at the spacer to position a single fluorescent emitter at nanometer accuracy within the cavity. Using Cy5 as a model emitter, a similar to 30-fold fluorescence enhancement and a significantly reduced emission lifetime (from 1.6 ns to 670 ps) were experimentally verified, confirming significant emitter-cavity interactions. This DR-templated assembly method is capable of fitting AuNRs of variable length-to-width aspect ratios to form anisotropic nanocavities and deterministically incorporate different single emitters, thus enabling flexible design of both cavity resonance and emission wavelengths to tailor light-matter interactions at nanometer scale.
关键词:
通讯作者信息:
电子邮件地址: