• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Gongming (Wang, Gongming.) | Jia, Qing-Shan (Jia, Qing-Shan.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Bi, Jing (Bi, Jing.) | Zhou, MengChu (Zhou, MengChu.)

收录:

EI Scopus SCIE

摘要:

A continuous stirred-tank reactor (CSTR) system is widely applied in wastewater treatment processes. Its control is a challenging industrial-process-control problem due to great difficulty to achieve accurate system identification. This work proposes a deep learning-based model predictive control (DeepMPC) to model and control the CSTR system. The proposed DeepMPC consists of a growing deep belief network (GDBN) and an optimal controller. First, GDBN can automatically determine its size with transfer learning to achieve high performance in system identification, and it serves just as a predictive model of a controlled system. The model can accurately approximate the dynamics of the controlled system with a uniformly ultimately bounded error. Second, quadratic optimization is conducted to obtain an optimal controller. This work analyzes the convergence and stability of DeepMPC. Finally, the DeepMPC is used to model and control a second-order CSTR system. In the experiments, DeepMPC shows a better performance in modeling, tracking, and antidisturbance than the other state-of-the-art methods.

关键词:

Chemical reactors model predictive control Prediction algorithms Feature extraction Predictive control growing deep belief network (GDBN) model Continuous stirred-tank reactor (CSTR) system optimal controller Predictive models Training Computational modeling transfer learning

作者机构:

  • [ 1 ] [Wang, Gongming]Tsinghua Univ, Ctr Intelligent & Networked Syst CFINS, Dept Automat, Beijing 100084, Peoples R China
  • [ 2 ] [Jia, Qing-Shan]Tsinghua Univ, Ctr Intelligent & Networked Syst CFINS, Dept Automat, Beijing 100084, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 6 ] [Zhou, MengChu]King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2021

期: 8

卷: 32

页码: 3643-3652

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 56

SCOPUS被引频次: 80

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:515/3897214
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司