Indexed by:
Abstract:
Nonlinear energy sink (NES) can passively absorb broadband energy from primary oscillators. Proper multiple NESs connected in parallel exhibit superior performance to single-degree-of-freedom (SDOF) NESs. In this work, a linear coupling spring is installed between two parallel NESs so as to expand the application scope of such vibration absorbers. The vibration absorption of the parallel and parallel-coupled NESs and the system response induced by the coupling spring are studied. The results show that the responses of the system exhibit a significant difference when the heavier cubic oscillators in the NESs have lower stiffness and the lighter cubic oscillators have higher stiffness. Moreover, the e +/- ciency of the parallel-coupled NES is higher for medium shocks but lower for small and large shocks than that of the parallel NESs. The parallel-coupled NES also shows superior performance for medium harmonic excitations until higher response branches are induced. The performance of the parallel-coupled NES and the SDOF NES is compared. It is found that, regardless of the chosen SDOF NES parameters, the performance of the parallel-coupled NES is similar or superior to that of the SDOF NES in the entire force range.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
ISSN: 0253-4827
Year: 2021
Issue: 8
Volume: 42
Page: 1135-1154
4 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 19
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: