• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wu, M. Q. (Wu, M. Q..) | Zhang, W. (Zhang, W..) (Scholars:张伟) | Niu, Y. (Niu, Y..)

Indexed by:

EI Scopus SCIE

Abstract:

This paper experimentally and numerically investigates the nonlinear vibrations and dynamic snap-through behaviors of the bistable asymmetric carbon fiber-reinforced [90n/0n] composite laminated shallow shell. In the experimental research, in order to produce the dynamic snap-through phenomena, the center of a bistable asymmetric composite laminated shallow shell is clamped on an electromechanical shaker. The shaker provides the controlled frequency and amplitude of the foundation excitation. A laser displacement testing system collects the data of the vibration signals for the bistable asymmetric composite laminated shallow shell. A high-speed camera captures the steady-state vibrations of the bistable asymmetric composite laminated shallow shell. The experimental results demonstrate the influence of the structural parameters on the dynamic snap-through phenomena and nonlinear vibrations of the bistable asymmetric composite laminated shallow shell. The amplitudefrequency response curves are obtained by the experimental results. The bifurcation diagrams, phase portraits, time histories, power spectrums, and Poincare & acute; maps are obtained to experimentally and numerically illustrate the single-well periodic, chaotic and double-well chaotic vibrations of the bistable asymmetric composite laminated shallow shell under the center foundation excitation. In numerical research, ABAQUS/CAE is used to simulate the dynamic responses of the bistable asymmetric composite laminated shallow shell. The subspace iteration method is utilized to give the vibration modal analysis. The vibration modes in the experimental research are qualitatively consistent with the results of the ABAQUS numerical simulation. The phenomenon of the energy transfer from the high-order to low-order primary resonance is discovered. The results of the experiment and numerical simulation are well verified with each other.

Keyword:

Foundation excitation Bistable asymmetric composite laminated shallow shell Experiment Dynamic snap-through phenomena Double-well vibrations

Author Community:

  • [ 1 ] [Wu, M. Q.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, W.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Niu, Y.]Tianjin Polytech Univ, Sch Mech Engn, Tianjin 300387, Peoples R China

Reprint Author's Address:

  • 张伟

    [Zhang, W.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

EUROPEAN JOURNAL OF MECHANICS A-SOLIDS

ISSN: 0997-7538

Year: 2021

Volume: 89

4 . 1 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:87

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:534/5287029
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.