• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Wang, Zihan (Wang, Zihan.) | Zhang, Xiaodan (Zhang, Xiaodan.) | Li, Junwei (Li, Junwei.)

收录:

EI Scopus SCIE

摘要:

Brain network classification has attracted increasing attention with the widespread application in the automatic diagnosis of brain diseases. However, limited by the higher cost of detecting and marking for medical imaging, the amount of brain network data is usually small, which largely restricts the performance of current brain network classification models. In this paper, we propose a new sparse data augmentation model (SDAM) based on EncoderForest to effectively enhance the brain network data and improve the classification performance. The EncoderForest based SDAM uses a generator which innovatively encodes the rules of a set of parallel decision trees to generate sparse data with only discriminative connections. The generated data expands the original data set effectively by utilizing the advantages of EncoderForest in learning data feature sparsely and constructing a feature association generation model compactly. In addition, the SDAM is flexible to combine with different classification models, such as random forest, support vector machine, deep neural network, etc. The experimental results on three common brain disease data sets show that our model is able to reasonably augment the brain network data and remarkably improve the performance of various classifiers.

关键词:

EncoderForest Sparse data augmentation Brain network classification

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Zihan]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Xiaodan]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Junwei]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED INTELLIGENCE

ISSN: 0924-669X

年份: 2021

期: 4

卷: 52

页码: 4317-4329

5 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:745/3906790
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司