• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) (学者:韩红桂) | Liu, Zheng (Liu, Zheng.) | Liu, Hongxu (Liu, Hongxu.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

SCIE

摘要:

Model predictive control (MPC) has been considered as a promising alternative for the control of nonlinear systems. However, this controller suffers from a challenge that it is difficult to deal with the complex nonlinear systems with incomplete datasets. To solve this problem, a novel MPC, by utilizing knowledge-data-driven model (KDDM), is designed and analyzed in this article. In comparison with the existing literatures, this knowledge-data-driven MPC (KDD-MPC) contains these following contributions. First, a systematic strategy is developed to reduce the online computational burden of KDD-MPC. Therefore, this KDD-MPC can own fast action to achieve favorable control performance. Second, the proposed KDDM intends to not only make full use of limited state information from the current model but also effectively leverage the knowledge from the reference model in the learning process. Therefore, it is more efficient for the complex nonlinear systems with insufficient data. Third, a novel transfer learning mechanism is designed to determine the optimal control sequence of KDD-MPC with strong adaptability. Therefore, it is suitable to achieve the desired control performance for engineering implementations. Finally, the benchmark problem and industrial application are provided to demonstrate the attractiveness and effectiveness of KDD-MPC.

关键词:

Adaptation models Computational modeling Knowledge-data-driven model (KDDM) knowledge-data-driven model predictive control (KDD-MPC) nonlinear systems Nonlinear systems Optimal control Optimization Predictive control transfer learning mechanism

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zheng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Hongxu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Honggui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Zheng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Hongxu]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS

ISSN: 2168-2216

年份: 2021

期: 7

卷: 51

页码: 4492-4504

8 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 31

SCOPUS被引频次: 36

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:180/3605295
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司