• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Xiangdong (Meng, Xiangdong.) | Ma, Wei (Ma, Wei.) | Li, Chunhu (Li, Chunhu.) | Mi, Qing (Mi, Qing.)

收录:

EI Scopus SCIE

摘要:

Existing NR-IIQA (no reference-based inpainted image quality assessment) algorithms assess the quality of an inpainted image via artificially designed unnaturalness expression, which often fail to capture inpainted artifacts. This paper presents a new deep rank learning-based method for NR-IIQA. The model adopts a siamese deep architecture, which takes a pair of inpainted images as input and outputs their rank order. Each branch utilizes a CNN structure to capture the global structure coherence and a patch-wise coherence assessment module (PCAM) to depict the local color and texture consistency in an inpainted image. To train the deep model, we construct a new dataset, which contains thousands of pairs of inpainted images with ground-truth quality ranking labels. Rich ablation studies are conducted to verify the key modules of the proposed architecture. Comparative experimental results demonstrate that our method outperforms existing NR-IIQA metrics in evaluating both inpainted images and inpainting algorithms.

关键词:

Image quality assessment Siamese network Rank learning Image inpainting

作者机构:

  • [ 1 ] [Meng, Xiangdong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Chunhu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Mi, Qing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ma, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

ISSN: 1047-3203

年份: 2021

卷: 78

2 . 6 0 0

JCR@2022

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1463/4242704
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司