收录:
摘要:
Existing NR-IIQA (no reference-based inpainted image quality assessment) algorithms assess the quality of an inpainted image via artificially designed unnaturalness expression, which often fail to capture inpainted artifacts. This paper presents a new deep rank learning-based method for NR-IIQA. The model adopts a siamese deep architecture, which takes a pair of inpainted images as input and outputs their rank order. Each branch utilizes a CNN structure to capture the global structure coherence and a patch-wise coherence assessment module (PCAM) to depict the local color and texture consistency in an inpainted image. To train the deep model, we construct a new dataset, which contains thousands of pairs of inpainted images with ground-truth quality ranking labels. Rich ablation studies are conducted to verify the key modules of the proposed architecture. Comparative experimental results demonstrate that our method outperforms existing NR-IIQA metrics in evaluating both inpainted images and inpainting algorithms.
关键词:
通讯作者信息:
电子邮件地址: