• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wei, Zhonghua (Wei, Zhonghua.) | Peng, Jingxuan (Peng, Jingxuan.) | Ma, Xinwang (Ma, Xinwang.) | Qiu, Shi (Qiu, Shi.) | Wang, Shaofan (Wang, Shaofan.)

Indexed by:

Scopus SCIE

Abstract:

Distribution patterns of particulate matter 2.5 (PM2.5) inside urban street canyons varies according to the street canyon enclosure ratio (SCER) and traffic flow states, and therefore they affect people in different positions of street canyons to different extents. This paper studied PM2.5 distribution patterns in both symmetric and asymmetric street canyons by using the computational fluid dynamics technique. Simulation experiments were conducted in a series of isolated street canyons in Beijing with five SCERs and three types of traffic flow states. The results of the simulation experiments were verified with on-site data. The results are threefold: (1) PM2.5 emitted by the vehicles gathers around the corners of leeward buildings of street canyons, and this phenomenon tends to be aggravated by heavy traffic flow states in most scenarios; (2) of five SCERs, it was the most difficult for PM2.5 to spread out of the canyons with SCER = 2:1:2, whereas it was the easiest for PM2.5 to spread out of the canyons with SCER = 2:2:1; and (3) pedestrians and residents on the leeward side of asymmetric street canyons are exposed to the highest PM2.5 concentration. The findings of this research will assist in designing street canyons, controlling the traffic flow, and developing measures to reduce the harm of PM2.5 to the public. (C) 2021 American Society of Civil Engineers.

Keyword:

Traffic flow Street canyon enclosure ratio Particulate matter 2.5 (PM2.5) distribution patterns Street canyon Aspect ratio

Author Community:

  • [ 1 ] [Wei, Zhonghua]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Jingxuan]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Ma, Xinwang]CRSC Commun & Informat Corp, 6 Courtyard,Bowuguan South Rd, Beijing 100070, Peoples R China
  • [ 4 ] [Qiu, Shi]Cent South Univ, Coll Civil Engn, 932 Lushan South Rd, Changsha 410083, Peoples R China
  • [ 5 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF ENVIRONMENTAL ENGINEERING

ISSN: 0733-9372

Year: 2021

Issue: 7

Volume: 147

2 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:87

JCR Journal Grade:3

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:760/5321231
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.