• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Zhishen (Sun, Zhishen.) | Giammarinaro, Bruno (Giammarinaro, Bruno.) | Birer, Alain (Birer, Alain.) | Liu, Guoqiang (Liu, Guoqiang.) | Catheline, Stefan (Catheline, Stefan.)

收录:

SCIE

摘要:

Objective: This article presents shear wave generation by remotely stimulating aluminum patches through a transient magnetic field, and its preliminary application in the cross-correlation approach based ultrasound elastography. Methods: A transient magnetic field is employed to remotely vibrate the patch actuators through the Lorentz force. The origin, and the characteristics of the Lorentz force are confirmed using an interferometric laser probe. The shear wave displacement fields generated in the soft medium are studied through the ultrafast ultrasound imaging. The potential of the shear wave fields generated through the patch actuators for the cross-correlation approach based elastography is confirmed through experiments on an agar phantom sample. Results: Under a transient magnetic field of changing rate of 10.44 kT/s, the patch actuator generates a shear wave source of amplitude of 100 mu m in a polyvinyl alcohol (PVA) phantom sample. The shear wave fields created by experiments agree qualitatively well with those by theory. From the shear wave velocity map computed from 100 frames of shear wave fields, the boundaries of cylindrical regions of different stiffness can be clearly recognized, which are completely concealed in the ultrasound image. Conclusion: Shear wave fields in the level of 100 mu m can be remotely generated in soft medium through stimulating aluminum patches with a transient magnetic field, and qualitative shear wave velocity maps can be reconstructed from the shear wave fields generated. Significance: The proposed method allows potential application of the cross-correlation approach based elastography in intravascular-based or catheter-based cardiology.

关键词:

Lorentz force Passive elastography shear wave source generation transient magnetic stimulation

作者机构:

  • [ 1 ] [Sun, Zhishen]Beijing Univ Technol, Fac Informat Technol, Coll Informat & Commun Engn, Beijing, Peoples R China
  • [ 2 ] [Sun, Zhishen]Univ Lyon, Univ Claude Bernard Lyon 1, Ctr Leon Berard,INSERM, LabTAU,UMR1032, Lyon, France
  • [ 3 ] [Giammarinaro, Bruno]Univ Lyon, Univ Claude Bernard Lyon 1, Ctr Leon Berard,INSERM, LabTAU,UMR1032, Lyon, France
  • [ 4 ] [Birer, Alain]Univ Lyon, Univ Claude Bernard Lyon 1, Ctr Leon Berard,INSERM, LabTAU,UMR1032, Lyon, France
  • [ 5 ] [Catheline, Stefan]Univ Lyon, Univ Claude Bernard Lyon 1, Ctr Leon Berard,INSERM, LabTAU,UMR1032, Lyon, France
  • [ 6 ] [Liu, Guoqiang]Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
  • [ 7 ] [Liu, Guoqiang]Univ Chinese Acad Sci, Beijing 100049, Peoples R China

通讯作者信息:

  • [Catheline, Stefan]Univ Lyon, Univ Claude Bernard Lyon 1, Ctr Leon Berard,INSERM, LabTAU,UMR1032, Lyon, France;;[Liu, Guoqiang]Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

ISSN: 0018-9294

年份: 2021

期: 7

卷: 68

页码: 2129-2139

4 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1575/2924559
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司