• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Gongming (Wang, Gongming.) | Jia, Qing-Shan (Jia, Qing-Shan.) | Zhou, MengChu (Zhou, MengChu.) | Bi, Jing (Bi, Jing.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Abusorrah, Abdullah (Abusorrah, Abdullah.)

收录:

EI Scopus SCIE

摘要:

This paper aims to present a comprehensive survey on water quality soft-sensing of a wastewater treatment process (WWTP) based on artificial neural networks (ANNs). We mainly present problem formulation of water quality soft-sensing, common soft-sensing models, practical soft-sensing examples and discussion on the performance of soft-sensing models. In details, problem formulation includes characteristic analysis and modeling principle of water quality soft-sensing. The common soft-sensing models mainly include a back-propagation neural network, radial basis function neural network, fuzzy neural network (FNN), echo state network (ESN), growing deep belief network and deep belief network with event-triggered learning (DBN-EL). They are compared in terms of accuracy, efficiency and computational complexity with partial-least-square-regression DBN (PLSR-DBN), growing ESN, sparse deep belief FNN, self-organizing DBN, wavelet-ANN and self-organizing cascade neural network (SCNN). In addition, this paper generally discusses and explains what factors affect the accuracy of the ANNs-based soft-sensing models. Finally, this paper points out several challenges in soft-sensing models of WWTP, which may be helpful for researchers and practitioner to explore the future solutions for their particular applications.

关键词:

Soft-sensing example Machine learning Deep belief network Wastewater treatment process (WWTP) Artificial neural network Soft-sensing model

作者机构:

  • [ 1 ] [Wang, Gongming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Jia, Qing-Shan]Tsinghua Univ, Dept Automat, Ctr Intelligent & Networked Syst CFINS, Beijing 100084, Peoples R China
  • [ 5 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 6 ] [Abusorrah, Abdullah]King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21481, Saudi Arabia
  • [ 7 ] [Abusorrah, Abdullah]King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21481, Saudi Arabia

通讯作者信息:

  • [Wang, Gongming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ARTIFICIAL INTELLIGENCE REVIEW

ISSN: 0269-2821

年份: 2021

期: 1

卷: 55

页码: 565-587

1 2 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 89

SCOPUS被引频次: 95

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:745/3912819
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司