• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Li (Zhang, Li.) | Sun, Qingxuan (Sun, Qingxuan.) | You, Yue (You, Yue.) | Zhang, Kai (Zhang, Kai.) | Gao, Chundi (Gao, Chundi.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

Scopus SCIE

摘要:

The composition and structure of dissolved organic matter (DOM) play vital roles in the material cycle of river ecosystems. Based on ultraviolet-visible absorption spectroscopy, excitation-emission matrix fluorescence spectroscopy, and ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry technology, this study comprehensively characterized the composition and structure of DOM in the overlying water of the Chaobai River in order to determine the potential environmental impact of DOM on the water quality. The results showed that the DOM content of the overlying water in the Chaobai River was between 10.94 and 28.13 mg/L. The main DOM component of the overlying water was humus (70.94%). The relative abundance of CHOS compounds in the Chaobai River was lower than Maozhou River (urbanized river) and significantly higher than Xiangxi Bay (suburban river). In addition, the DOM composition and structure of the overlying water were closely related to anthropogenic input, microbial activity, and phytoplankton. In particular, chlorophyll a can indirectly reflect fresh autochthonous DOM content and composition in the overlying water. The results of this study further reveal the characteristics of suburban rivers and provide theoretical basis and guidance for the water quality evaluation and pollution control of the Chaobai River and other suburban rivers worldwide.

关键词:

Dissolved organic matter Chaobai River Overlying water Composition and structure

作者机构:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Qingxuan]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [You, Yue]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Gao, Chundi]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 6 ] [You, Yue]Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
  • [ 7 ] [Zhang, Kai]China Energy Investment Corp, State Key Lab Water Resource Protect & Utilizat C, Beijing 102211, Peoples R China

通讯作者信息:

  • [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH

ISSN: 0944-1344

年份: 2021

期: 42

卷: 28

页码: 59673-59686

5 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:94

JCR分区:2

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:519/4292602
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司