• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Xiaolei (Zhao, Xiaolei.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Tian, Jimiao (Tian, Jimiao.) | Zhuo, Li (Zhuo, Li.) | Zhang, Jie (Zhang, Jie.)

收录:

EI Scopus SCIE

摘要:

Due to the complex background and spatial distribution, it brings great challenge to object detection in high-resolution remote sensing images. In view of the characteristics of various scales, arbitrary orientations, shape variations, and dense arrangement, a multiscale object detection method in high-resolution remote sensing images is proposed by using rotation invariance deep features driven by channel attention. First, a channel attention module is added to our feature fusion and scaling-based single shot detector (FS-SSD) to strengthen the long-term semantic dependence between objects for improving the discriminative ability of the deep features. Then, an oriented response convolution is followed to generate feature maps with orientation channels to produce rotation invariant deep features. Finally, multiscale objects are predicted in a high-resolution remote sensing image by fusing various scale feature maps with multiscale feature module in FS-SSD. Five experiments are conducted on NWPU VHR-10 dataset and achieve better detection performance compared with the state-of-the-art methods.

关键词:

作者机构:

  • [ 1 ] [Zhao, Xiaolei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Tian, Jimiao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Fac Informat Technol, Beijing, Peoples R China
  • [ 7 ] [Zhang, Jie]China Univ Geosci, Inst Math Geol Remote Sensing, Sch Earth Resources, Wuhan, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;[Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF REMOTE SENSING

ISSN: 0143-1161

年份: 2021

期: 15

卷: 42

页码: 5754-5773

3 . 4 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:64

JCR分区:2

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 22

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:69/3911878
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司