• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Yue (Li, Yue.) (学者:李悦) | Li, Hongwen (Li, Hongwen.) | Jin, Caiyun (Jin, Caiyun.)

收录:

SCIE

摘要:

The effect of the type and content of multi-wall carbon nanotubes (MWCNTs) on the damping performance of cement mortar is studied in this paper. The pristine MWCNTs (P-CNT) and the functionalized MWCNTs (F-CNT) grafted with COOH were used in the experiment. The content of MWCNTs was 0.05wt% and 0.1wt% of cement. The flexural/compressive strength and loss factor of CNT-mortar composites were measured. The experimental results show that MWCNTs can significantly enhance the flexural strength and loss factor, and the values increased with the increase of CNTs content. The effect F-CNT was better than P-CNT when the MWCNTs content was the same due to the presence of COOH. The mechanism of MWCNTs reinforced mortar damping performance was analyzed by a variety of micro test techniques. The test results of X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetry showed that MWCNTs did not change the compositions of mortar, but improved the polymerization degree of gel and the degree of hydration of cement. The results of mercury intrusion porosimetry, N-2 adsorption and backscattered scanning electron microscopy showed that MWCNTs effectively reduced the porosity and interfacial transition zone thickness of mortar. Transmission electron microscope results showed that the energy dissipation capacity of mortar is increased due to the bridging effect of MWCNTs.

关键词:

Damping Loss factor Mechanism analysis Mortar MWCNTs

作者机构:

  • [ 1 ] [Li, Yue]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Hongwen]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Jin, Caiyun]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jin, Caiyun]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING

ISSN: 1644-9665

年份: 2021

期: 3

卷: 21

4 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:3055/2963067
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司