收录:
摘要:
Suitability of different substrates for enriched mixed microbial cultures (MMCs) is of importance to the polyhydroxyalkanoate (PHA) fermentation using renewable carbon. In this study, three enriched MMCs were evaluated for their fermentation features and kinetics with different carbon sources (sodium acetate, glucose, or starch). The results showed that the highly specific bacterial community composition was developed depending on the applied carbon source. Correspondence analysis suggested that the genus affiliated in Gammaproteobacteria_unclassified was related to 3-hydroxybutyrate (HB) synthesis in acetate-fed MMC (relative abundance of 38%) and glucose-fed MMC (relative abundance of 76.7%), whereas Vibrio genus was related to 3-hydroxyvalerate (HV) production in glucose-fed MMC (relative abundance of 0.4%) and starch-fed MMC (relative abundance of 94.6%). The acetate-fed MMC could not use glucose and starch as fermentation carbon sources, showing the limitation of microbial species developed with the specific metabolic substrate. Glucose-fed MMC produced the highest PHA cell content of 64.2% cell dry weight when using sodium acetate as the fermentation carbon. Glucose-fed MMC showed wide resilience and adaptation to various carbon sources. When actual landfill leachate was used for fermentation by glucose-fed MMC, maximum PHA cell content of 45.5% cell dry weight and the PHA volumetric productivity of 0.265 g PHA/(L center dot h) were obtained. This study suggested carbon sources applied in the MMC enrichment stage had a significant influence on utilization of carbon in the fermentation stage.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
ISSN: 0273-2289
年份: 2021
期: 10
卷: 193
页码: 3253-3270
3 . 0 0 0
JCR@2022
ESI学科: BIOLOGY & BIOCHEMISTRY;
ESI高被引阀值:84
JCR分区:3