• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hou, Yue (Hou, Yue.) | Li, Qiuhan (Li, Qiuhan.) | Zhang, Chen (Zhang, Chen.) | Lu, Guoyang (Lu, Guoyang.) | Ye, Zhoujing (Ye, Zhoujing.) | Chen, Yihan (Chen, Yihan.) | Wang, Linbing (Wang, Linbing.) | Cao, Dandan (Cao, Dandan.)

收录:

EI Scopus SCIE

摘要:

In modern transportation, pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians. Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users. Therefore, monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance, which in turn ensures public transportation safety. Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions. Advanced technologies can be employed for the collection and analysis of such data, including various intrusive sensing techniques, image processing techniques, and machine learning methods. This review summarizes the state-of-the-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches. (C) 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.

关键词:

Pavement monitoring and analysis Machine learning methods The state-of-the-art review Intrusive sensing Image processing techniques

作者机构:

  • [ 1 ] [Hou, Yue]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Qiuhan]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Chen]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Yihan]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Cao, Dandan]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Qiuhan]Beijing Jiaotong Univ, Key Lab Transport Ind Big Data Applicat Technol C, Beijing 100044, Peoples R China
  • [ 7 ] [Zhang, Chen]Beijing Jiaotong Univ, Key Lab Transport Ind Big Data Applicat Technol C, Beijing 100044, Peoples R China
  • [ 8 ] [Lu, Guoyang]Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
  • [ 9 ] [Ye, Zhoujing]Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China
  • [ 10 ] [Chen, Yihan]Southeast Univ, Sch Transportat, Nanjing 211189, Peoples R China
  • [ 11 ] [Wang, Linbing]Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA

通讯作者信息:

  • [Wang, Linbing]Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ENGINEERING

ISSN: 2095-8099

年份: 2021

期: 6

卷: 7

页码: 845-856

1 2 . 8 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 150

SCOPUS被引频次: 183

ESI高被引论文在榜: 22 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:283/3911643
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司