• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xiujuan (Wang, Xiujuan.) | Zheng, Qianqian (Zheng, Qianqian.) | Zheng, Kangfeng (Zheng, Kangfeng.) | Sui, Yi (Sui, Yi.) | Cao, Siwei (Cao, Siwei.) | Shi, Yutong (Shi, Yutong.)

收录:

Scopus SCIE

摘要:

Malicious social media bots are disseminators of malicious information on social networks and seriously affect information security and the network environment. Efficient and reliable classification of social media bots is crucial for detecting information manipulation in social networks. Aiming to correct the defects of high-cost labeling and unbalanced positive and negative samples in the existing methods of social media bot detection, and to reduce the training of abnormal samples in the model, we propose an anomaly detection framework based on a combination of a Variational AutoEncoder and an anomaly detection algorithm. The purpose is to use Variational AutoEncoder to automatically encode and decode sample features. The normal sample features are more similar to the initial features after decoding; however, there is a difference between the abnormal samples and the initial features. The decoding representation and the original features are combined, and then the anomaly detection method is used for detection. The results show that the area under the curve of the proposed model for identifying social media bots reaches 98% through the experiments on public datasets, which can effectively distinguish bots from common users and further verify the performance of the proposed model.

关键词:

Variational AutoEncoder social networks social media bot detection anomaly detection

作者机构:

  • [ 1 ] [Wang, Xiujuan]Beijing Univ Technol, Informat Technol Inst, Beijing 100124, Peoples R China
  • [ 2 ] [Zheng, Qianqian]Beijing Univ Technol, Informat Technol Inst, Beijing 100124, Peoples R China
  • [ 3 ] [Sui, Yi]Beijing Univ Technol, Informat Technol Inst, Beijing 100124, Peoples R China
  • [ 4 ] [Cao, Siwei]Beijing Univ Technol, Informat Technol Inst, Beijing 100124, Peoples R China
  • [ 5 ] [Shi, Yutong]Beijing Univ Technol, Informat Technol Inst, Beijing 100124, Peoples R China
  • [ 6 ] [Zheng, Kangfeng]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China

通讯作者信息:

  • [Zheng, Qianqian]Beijing Univ Technol, Informat Technol Inst, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED SCIENCES-BASEL

年份: 2021

期: 12

卷: 11

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:975/3872567
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司