• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liang, Fangfang (Liang, Fangfang.) | Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Ma, Wei (Ma, Wei.) | Qiao, Yuanhua (Qiao, Yuanhua.) | Miao, Jun (Miao, Jun.)

收录:

EI Scopus SCIE

摘要:

In this paper, we propose a deep multimodal feature learning (DMFL) network for RGB-D salient object detection. The color and depth features are firstly extracted from low level to high level feature using CNN. Then the features at the high layer are shared and concatenated to construct joint feature representation of multi-modalities. The fused features are embedded to a high dimension metric space to express the salient and non-salient parts. And also a new objective function, consisting of cross-entropy and metric loss, is proposed to optimize the model. Both pixel and attribute level discriminative features are learned for semantical grouping to detect the salient objects. Experimental results show that the proposed model achieves promising performance and has about 1% to 2% improvement to conventional methods.

关键词:

Salient object detection Metric space Multimodal feature learning RGB-D images

作者机构:

  • [ 1 ] [Liang, Fangfang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Ma, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Liang, Fangfang]Beijing Key Lab Trusted Comp, Beijing, Peoples R China
  • [ 5 ] [Duan, Lijuan]Beijing Key Lab Trusted Comp, Beijing, Peoples R China
  • [ 6 ] [Ma, Wei]Beijing Key Lab Trusted Comp, Beijing, Peoples R China
  • [ 7 ] [Liang, Fangfang]Natl Engn Lab Crit Technol Informat Secur Classif, Beijing, Peoples R China
  • [ 8 ] [Duan, Lijuan]Natl Engn Lab Crit Technol Informat Secur Classif, Beijing, Peoples R China
  • [ 9 ] [Ma, Wei]Natl Engn Lab Crit Technol Informat Secur Classif, Beijing, Peoples R China
  • [ 10 ] [Qiao, Yuanhua]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 11 ] [Miao, Jun]Beijing Informat Sci & Technol Univ, Sch Comp Sci, Beijing Key Lab Internet Culture & Digital Dissem, Beijing, Peoples R China

通讯作者信息:

  • 段立娟

    [Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMPUTERS & ELECTRICAL ENGINEERING

ISSN: 0045-7906

年份: 2021

卷: 92

4 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:500/4953276
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司