• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hou, Yuewu (Hou, Yuewu.) | Liu, Zhaoying (Liu, Zhaoying.) | Zhang, Ting (Zhang, Ting.) | Li, Yujian (Li, Yujian.)

收录:

EI Scopus SCIE PubMed

摘要:

Roads are important mode of transportation, which are very convenient for people's daily work and life. However, it is challenging to accuratly extract road information from a high-resolution remote sensing image. This paper presents a road extraction method for remote sensing images with a complement UNet (C-UNet). C-UNet contains four modules. Firstly, the standard UNet is used to roughly extract road information from remote sensing images, getting the first segmentation result; secondly, a fixed threshold is utilized to erase partial extracted information; thirdly, a multi-scale dense dilated convolution UNet (MD-UNet) is introduced to discover the complement road areas in the erased masks, obtaining the second segmentation result; and, finally, we fuse the extraction results of the first and the third modules, getting the final segmentation results. Experimental results on the Massachusetts Road dataset indicate that our C-UNet gets the higher results than the state-of-the-art methods, demonstrating its effectiveness.

关键词:

UNet fixed threshold dilated convolution remote sensing complementary UNet

作者机构:

  • [ 1 ] [Hou, Yuewu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zhaoying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yujian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Yujian]Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin 541004, Peoples R China

通讯作者信息:

  • [Zhang, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SENSORS

年份: 2021

期: 6

卷: 21

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:96

JCR分区:2

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 78

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:462/4953197
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司