• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Silva-Galvez, Arturo (Silva-Galvez, Arturo.) | Monroy, Raul (Monroy, Raul.) | Ramirez-Marquez, Jose E. (Ramirez-Marquez, Jose E..) | Zhang, Chi (Zhang, Chi.) (学者:张弛)

收录:

SSCI EI Scopus SCIE

摘要:

The Video game-Crowdsourcing model to recollect data motivates people to participate by entertaining them. Research showed that the solutions players make in this model are competitive against experts in the area. Yet, the studies in the area focus on mimicking people's behavior, including their mistakes. Therefore, we use a Video game-Crowdsourcing to model a problem of interest to find strategies for it. To describe matches from the video game we created, we designed a representation that simplifies the discovery of strategies. Our experimentation compares high score matches against low score ones to find the best behaviors. We played 13 matches employing a known strategy for the problem to validate the methodology. Then, we applied the methodology to matches from players. The results suggest that extracting sub-sequences is a process to find strategies and that we can use them to design algorithms to improve current algorithmic solutions for that problem.

关键词:

video game Games Task analysis Crowdsourcing Neurons housing development problem (HDP) Pattern matching Training Big Data strategy

作者机构:

  • [ 1 ] [Silva-Galvez, Arturo]Tecnol Monterrey, Sch Engn & Sci, Monterrey 64849, Mexico
  • [ 2 ] [Monroy, Raul]Tecnol Monterrey, Sch Engn & Sci, Mexico City 52926, DF, Mexico
  • [ 3 ] [Ramirez-Marquez, Jose E.]Stevens Inst Technol, Enterprise Sci & Engn Div, Sch Syst & Enterprises, Hoboken, NJ 07030 USA
  • [ 4 ] [Zhang, Chi]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China

通讯作者信息:

  • [Silva-Galvez, Arturo]Tecnol Monterrey, Sch Engn & Sci, Monterrey 64849, Mexico

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2021

卷: 9

页码: 114870-114883

3 . 9 0 0

JCR@2022

JCR分区:2

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:505/4926155
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司