• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Xuan (Sun, Xuan.) | Liu, Pengyu (Liu, Pengyu.) | Jia, Xiaowei (Jia, Xiaowei.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Chen, Shanji (Chen, Shanji.) | Wu, Yueying (Wu, Yueying.)

收录:

EI Scopus SCIE

摘要:

This paper presents an effective machine learning-based depth selection algorithm for CTU (Coding Tree Unit) in HEVC (High Efficiency Video Coding). Existing machine learning methods are limited in their ability in handling the initial depth decision of CU (Coding Unit) and selecting the proper set of input features for the depth selection model. In this paper, we first propose a new classification approach for the initial division depth prediction. In particular, we study the correlation of the texture complexity, QPs (quantization parameters) and the depth decision of the CUs to forecast the original partition depth of the current CUs. Secondly, we further aim to determine the input features of the classifier by analysing the correlation between depth decision of the CUs, picture distortion and the bit-rate. Using the found relationships, we also study a decision method for the end partition depth of the current CUs using bit-rate and picture distortion as input. Finally, we formulate the depth division of the CUs as a binary classification problem and use the nearest neighbor classifier to conduct classification. Our proposed method can significantly improve the efficiency of interframe coding by circumventing the traversing cost of the division depth. It shows that the mentioned method can reduce the time spent by 34.56% compared to HM-16.9 while keeping the partition depth of the CUs correct.

关键词:

inter-frame coding HEVC CU depth

作者机构:

  • [ 1 ] [Sun, Xuan]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Pengyu]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Jia, Kebin]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Yueying]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Sun, Xuan]Beijing Lab Adv Informat Networks, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Pengyu]Beijing Lab Adv Informat Networks, Beijing 100124, Peoples R China
  • [ 7 ] [Jia, Kebin]Beijing Lab Adv Informat Networks, Beijing 100124, Peoples R China
  • [ 8 ] [Wu, Yueying]Beijing Lab Adv Informat Networks, Beijing 100124, Peoples R China
  • [ 9 ] [Sun, Xuan]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 10 ] [Liu, Pengyu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 11 ] [Jia, Kebin]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 12 ] [Wu, Yueying]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 13 ] [Jia, Xiaowei]Univ Pittsburgh, Dept Comp Sci, Pittsburgh, PA 15260 USA
  • [ 14 ] [Chen, Shanji]Qinghai Nationalities Univ, Sch Phys & Elect Informat Engn, Qinghai 810007, Peoples R China

通讯作者信息:

  • [Liu, Pengyu]Beijing Univ Technol, Beijing 100124, Peoples R China;;[Liu, Pengyu]Beijing Lab Adv Informat Networks, Beijing 100124, Peoples R China;;[Liu, Pengyu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

COMPUTER SYSTEMS SCIENCE AND ENGINEERING

ISSN: 0267-6192

年份: 2021

期: 2

卷: 39

页码: 275-286

2 . 2 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:132/4600710
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司