• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Gang (Yu, Gang.) | Tang, Jian (Tang, Jian.) (学者:汤健) | Zhang, Jian (Zhang, Jian.) | Wang, Zhonghui (Wang, Zhonghui.)

收录:

SCIE

摘要:

Kernel learning based on structure risk minimum can be employed to build a soft measuring model for analyzing small samples. However, it is difficult to select learning parameters, such as kernel parameter (KP) and regularization parameter (RP). In this paper, a soft measuring method is investigated to select learning parameters, which is based on adaptive multi-layer selective ensemble (AMLSEN) and least-square support vector machine (LSSVM). First, candidate kernels and RPs with K and R numbers are preset based on prior knowledge, and candidate sub-sub-models with K*R numbers are constructed through utilizing LSSVM. Second, the candidate sub-sub-models with same KPs and different RPs are selectively fused by using the branch and bound SEN (BBSEN) to obtain K SEN-sub-models. Third, these SEN-sub-models are selectively combined through using BBSEN again to obtain SEN models with different ensemble sizes, and then a new metric index is defined to determine the final AMLSEN-LSSVM-based soft measuring model. Finally, the learning parameters and ensemble sizes of different SEN layers are obtained adaptively. Simulation results based on the UCI benchmark and practical DXN datasets are conducted to validate the effectiveness of the proposed approach.

关键词:

dioxins emission least square support vector machine Multi-layer selective ensemble learning municipal solid waste incineration soft measuring model

作者机构:

  • [ 1 ] [Yu, Gang]State Key Lab Proc Automat Min & Met, Beijing 102600, Peoples R China
  • [ 2 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
  • [ 3 ] [Zhang, Jian]Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
  • [ 4 ] [Yu, Gang]Beijing Key Lab Proc Automat Min & Met, Beijing 102600, Peoples R China
  • [ 5 ] [Yu, Gang]BGRIMM Technol Grp Co Ltd, Beijing 102600, Peoples R China
  • [ 6 ] [Wang, Zhonghui]Univ Mississippi, Dept Comp & Informat Sci, Oxford, MS 38655 USA

通讯作者信息:

  • 汤健

    [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTELLIGENT AUTOMATION AND SOFT COMPUTING

ISSN: 1079-8587

年份: 2021

期: 1

卷: 29

页码: 273-290

2 . 0 0 0

JCR@2022

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1408/3637502
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司