• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ruan, Beibei (Ruan, Beibei.) | Zhu, Cui (Zhu, Cui.)

收录:

CPCI-S

摘要:

The existing link prediction researches of information networks mainly focus on the dynamic homogeneous network or the static heterogeneous network. It has always been a challenge to predict future relationships between nodes while learning both continuous-time and heterogeneous information simultaneously. In this paper, we propose a Heterogeneous and Continuous-Time Model Based on Self-Attention (HTAT) to complete the link prediction task by learning temporal evolution and heterogeneity jointly. The HTAT model consists of the base layer and the heterogeneous layer. The base layer incorporates a functional time encoding with self-attention mechanism to capture continuous-time evolution. And the heterogeneous layer consists of multi-view attention to learn heterogeneous information. Experimental results show that HTAT is significantly competitive compared with four state-of-the-art baselines on three real-world datasets.

关键词:

Base layer Dynamic heterogeneous network Heterogeneous layer Link prediction Self-attention

作者机构:

  • [ 1 ] [Ruan, Beibei]Beijing Univ Technol, Coll Comp Sci, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhu, Cui]Beijing Univ Technol, Coll Comp Sci, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Ruan, Beibei]Beijing Univ Technol, Coll Comp Sci, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III

ISSN: 0302-9743

年份: 2021

卷: 12817

页码: 62-74

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:436/3700050
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司