收录:
摘要:
提出基于宽度学习系统的功能性磁共振成像(fMRI)数据分类方法,通过简单结构提取fMRI数据的深层特征,加快分类速度.使用fMRI中感兴趣区域体素均值的时间序列构造输入数据,分别提取fMRI数据的浅层和深层特征,映射为宽度学习的特征节点和增强节点并构建模型框架,利用岭回归逆计算分类模型的连接权值,实现对fMRI数据的分类.使用ABIDEⅠ、ABIDEⅡ和ADHD-200数据集,将所提方法与6种分类方法进行对比实验,结果表明,所提方法可以在保持良好的分类准确率的同时,大幅度降低训练时间.
关键词:
通讯作者信息:
电子邮件地址: