• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bao, Zhenshan (Bao, Zhenshan.) | Zhan, Kang (Zhan, Kang.) | Zhang, Wenbo (Zhang, Wenbo.) | Guo, Junnan (Guo, Junnan.)

收录:

CPCI-S EI Scopus

摘要:

Neural network quantization has become an important research area. Deep networks run with low precision operations at inference time offer power and space advantages over high precision alternatives, and can maintain high accuracy. However, few quantization can demonstrate this advantage on hardware platform, because the design of quantization algorithm lacks the consideration of actual hardware implementation. In this paper, we propose an efficient quantization method for hardware implementation, a learnable parameter soft clipping fully integer quantization (LSFQ), which includes weight quantization and activation quantization with learnable clipping parameter method. The quantization parameters are optimized automatically by back propagation to minimize the loss, then the BatchNorm layer and convolutional layer are fused, and the bias and quantization step size are further quantized. In this way, LSFQ accomplishes integer-only-arithmetic. We evaluate the quantization algorithm on a variety of models including VGG7, mobile-net v2 in CIFAR10 and CIFAR100. The results show that when the quantization reaches 3-bit or 4-bit, the accuracy loss of our method is less than 1% compared with the full-precision network In addition, we design an accelerator for the quantization algorithm and deploy it to the FPGA platform to verify the hardware-awareness of our method.

关键词:

convolutional neural network (CNN) accelerator Low Precision Quantization field-programmable gate array (FPGA)

作者机构:

  • [ 1 ] [Bao, Zhenshan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhan, Kang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Wenbo]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Guo, Junnan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Bao, Zhenshan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2021 IEEE COOL CHIPS 24: IEEE SYMPOSIUM IN LOW-POWER AND HIGH-SPEED CHIPS

ISSN: 2473-4683

年份: 2021

语种: 英文

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:608/4958477
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司