收录:
摘要:
近年来通过利用视觉信息估计相机的位姿,实现对无人车的定位成为研究热点,视觉里程计是其中的重要组成部分.传统的视觉里程计需要复杂的流程如特征提取、特征匹配、后端优化,难以求解出最优情况.因此,提出融合注意力和长短时记忆网络的视觉里程计,通过注意力机制增强的卷积网络从帧间变化中提取运动特征,然后使用长短时记忆网络进行时序建模,输入RGB图片序列,模型端到端地输出位姿.在公开的无人驾驶KITTI数据集上完成实验,并与其他算法进行对比.结果表明,该方法在位姿估计上的误差低于其他单目算法,定性分析显示该算法具有较好的泛化能力.
关键词:
通讯作者信息:
电子邮件地址: