收录:
摘要:
针对在强噪声背景下风电机组滚动轴承复合故障特征较为微弱,且不同故障特征之间相互干扰,使得复合故障特征难以有效分离的问题,提出基于多点峭度-多点优化调整的最小熵解卷积(multipoint kurtosis-multipoint optimal minimum entropy deconvolution adjusted,MK-MOMEDA)和Teager能量算子的复合故障特征提取方法.首先对复合故障信号进行解卷积多点峭度谱分析,获取故障冲击成分的周期,根据相关的周期分别设定包含故障周期在内的特征提取区间,然后对故障信号进行解卷积运算,分离出不同的故障特征,再使用Teager能量算子增强解卷积后的冲击信号,最后对增强后的信号作傅里叶变换,通过分析频谱图中的主导故障特征频率可有效识别出复合故障特征.将该方法应用于实验平台模拟滚动轴承复合故障以及实际风电机组轴承复合故障进行验证,结果表明该方法能实现复合故障特征的准确分离,成功诊断出故障类型.
关键词:
通讯作者信息:
电子邮件地址: