• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

何坚 (何坚.) | 刘炎 (刘炎.) | 祖天奇 (祖天奇.)

收录:

Scopus CSCD

摘要:

为了解决双流融合网络对动态手势关键帧及手部轮廓特征检测不足的问题,提出一种手势时空特征与通道注意力融合的动态手势识别方法.首先,在双流融合网络中引入有效通道注意力(eficient channel attention,ECA)增强双流识别算法对手势关键帧的关注度,并利用双流中的空间卷积网络和时间卷积网络分别提取动态手势中的空间和时序特征;其次,通过ECA在空间流中选取最高关注度的手势帧,利用单发多框检测器技术(single shot multibox detector,SSD)提取相应手部轮廓特征;最后,将手部轮廓特征与双流中提取的人体姿态特征、时序特征融合后分类识别手势.该方法在Chalearn 2013多模态手语识别数据集上进行了验证,准确率为66.23%,相比之前在该数据集上仅使用RGB信息进行双流识别的方法获得了更好的手势识别效果.

关键词:

双流融合网络 关键帧 通道注意力 动态手势识别 单发多框检测器 Chalearn2013数据集

作者机构:

  • [ 1 ] [何坚]北京市物联网软件与系统工程技术研究中心, 北京 100124;北京工业大学信息学部, 北京 100124
  • [ 2 ] [刘炎]北京工业大学
  • [ 3 ] [祖天奇]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

北京工业大学学报

ISSN: 0254-0037

年份: 2021

期: 8

卷: 47

页码: 824-832

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:1441/3855681
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司