摘要:
目前现有基于模型的推荐算法多是将评分数据输入到深度学习模型中进行训练,得出推荐结果。其缺陷在于无法对预测结果进行可解释性分析。除此之外,无法有效地解决算法的冷启动问题。因此,本文提出一种基于知识图谱和Bi-LSTM的推荐算法,来有效解决算法的可解释性和冷启动问题。首先将获取到的数据集进行预处理,生成预编码向量,根据数据集结点的连接性,构建专业领域知识图谱。其次利用知识图谱的元路径提取技术获取到多条用户-物品路径信息,将其输入到Bi-LSTM中,在路径经过的各结点处加入一层注意力机制,目的是为了模型能够有效地获取到较远结点的信息。最后将多条路径的训练结果输入到平均池化层中,用以区分不同路径的重要...
关键词:
通讯作者信息:
电子邮件地址: