收录:
摘要:
准确把握公共交通通勤乘客的目的地,有助于明确乘客出行需求,提升公共交通服务水平。基于北京市1个月的公共交通出行数据和RP调查数据,通过关联分析乘客公交卡号与公共交通刷卡数据和线站数据,匹配获得563名通勤乘客完整出行链数据,并利用关联规则实现302名公交通勤乘客高、中、低出行稳定性辨识。引入XGBoost集成学习算法,分别以不同公交出行稳定性乘客出行目的地显著影响因素为输入变量,以下次出行目的地为输出变量,通过模型参数调优,分类构建了公共交通通勤个体乘客下次出行目的地预测模型,高、中、低稳定性乘客出行目的地预测准确率分别为90%,66.67%和50%。借助个体乘客出行图谱转移概率对模型预测结果...
关键词:
通讯作者信息:
电子邮件地址: