• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao, Zhou (Tao, Zhou.) | Bingqiang, Huo (Bingqiang, Huo.) | Huiling, Lu (Huiling, Lu.) | Zaoli, Yang (Zaoli, Yang.) | Hongbin, Shi (Hongbin, Shi.)

收录:

Scopus SCIE PubMed

摘要:

Nonnegative sparse representation has become a popular methodology in medical analysis and diagnosis in recent years. In order to resolve network degradation, higher dimensionality in feature extraction, data redundancy, and other issues faced when medical images parameters are trained using convolutional neural networks. Lung tumors in chest CT image based on nonnegative, sparse, and collaborative representation classification of DenseNet (DenseNet-NSCR) are proposed by this paper: firstly, initialization parameters of pretrained DenseNet model using transfer learning; secondly, training DenseNet using CT images to extract feature vectors for the full connectivity layer; thirdly, a nonnegative, sparse, and collaborative representation (NSCR) is used to represent the feature vector and solve the coding coefficient matrix; fourthly, the residual similarity is used for classification. The experimental results show that the DenseNet-NSCR classification is better than the other models, and the various evaluation indexes such as specificity and sensitivity are also high, and the method has better robustness and generalization ability through comparison experiment using AlexNet, GoogleNet, and DenseNet-201 models.

关键词:

作者机构:

  • [ 1 ] [Tao, Zhou]North Minzu Univ, Sch Comp Sci & Engn, Yinchuan 750021, Ningxia, Peoples R China
  • [ 2 ] [Bingqiang, Huo]North Minzu Univ, Sch Comp Sci & Engn, Yinchuan 750021, Ningxia, Peoples R China
  • [ 3 ] [Huiling, Lu]Ningxia Med Univ, Sch Sci, Yinchuan 750004, Ningxia, Peoples R China
  • [ 4 ] [Zaoli, Yang]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 5 ] [Hongbin, Shi]Ningxia Med Univ, Gen Hosp, Urinary Surg, Yinchuan 750004, Ningxia, Peoples R China

通讯作者信息:

  • [Huiling, Lu]Ningxia Med Univ, Sch Sci, Yinchuan 750004, Ningxia, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

BIOMED RESEARCH INTERNATIONAL

ISSN: 2314-6133

年份: 2020

卷: 2020

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:136

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:643/4958314
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司