• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) | Chen, Huiming (Chen, Huiming.) | Wang, Zuohu (Wang, Zuohu.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI Scopus SCIE

摘要:

Carbon Fiber Reinforced Polymer (CFRP) has been widely utilized to wrap concrete column in order to improve the axial compressive bearing capacity. In this study, the size effect of CFRP-wrapped square concrete columns was investigated using both experimental and numerical approaches. A total of 30 geometrically-similar CFRP-wrapped concrete columns with a maximum cross-sectional width of 600 mm were designed and tested with repeated axial compression. The influences of loading type, structural size and reinforcement configuration on the failure of the columns were explored and measured. Moreover, a 3D meso-scale simulation approach considering the influence of concrete heterogeneity and CFRP-concrete interactions was utilized to furtherly investigate the size effect of CFRP-wrapped columns. In the 3D meso-scale simulations, the failure of columns with larger structural sizes and larger CFRP fiber ratios was analyzed. The size effect on the nominal compressive strength of CFRP-wrapped columns was examined and discussed in detail. Finally, an updated size effect law (SEL) was established to describe the size effect in CFRP-wrapped concrete columns. The updated SEL is proved to be reasonable, which shows good consistence with the present experimental data and simulation results.

关键词:

Nominal compressive strength Size effect Fiber ratio CFRP-wrapped concrete columns Meso-scale simulations

作者机构:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 2 ] [Chen, Huiming]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 4 ] [Wang, Zuohu]Beijing Univ Civil Engn & Architecture, Sch Civil & Transportat Engn, Beijing, Peoples R China

通讯作者信息:

  • 杜修力

    [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China;;[Wang, Zuohu]Beijing Univ Civil Engn & Architecture, Sch Civil & Transportat Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

COMPOSITE STRUCTURES

ISSN: 0263-8223

年份: 2020

卷: 254

6 . 3 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:169

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:383/4952889
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司